loom.executor.eka_to_mimiq_converter

Copyright 2024 Entropica Labs Pte Ltd

Licensed under the Apache License, Version 2.0 (the “License”); you may not use this file except in compliance with the License. You may obtain a copy of the License at

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.

class loom.executor.eka_to_mimiq_converter.EkaToMimiqConverter(**data)[source]

Bases: Converter[Channel, tuple[Any, dict[Channel, int]]]

Convert an InterpretationStep to a Mimiq circuit.

import mimiqcircuits as mymc
mimiq_alias = "mymc"
from loom.executor import EkaToMimiqConverter

conn = mymc.MimiqConnection()
conn.connect("username", "pwd")

mimiq_exec = EkaToMimiqConverter(
    mimiq_import_prefix=f"{mimiq_alias}.", circuit_varname="my_circuit"
)

program_str, qreg, creg = mimiq_exec.convert(interpreted_eka)

p = (
    f"import mimiqcircuits as {mimiq_alias}\n{program_str}"
)

local_ns = {}
exec(p, {}, local_ns)

res = local_ns["my_circuit"]

job = conn.execute(res, algorithm="mps", nsamples=5)
mcres = conn.get_result(job)

parsed_outcome = EkaToMimiqConverter.parse_target_run_outcome((mcres, creg))
Parameters:
  • mimiq_import_prefix (str) – The import alias for Mimiq. defaults to “mc.”.

  • circuit_varname (str) – The name of the Mimiq circuit variable.

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

ALLOW_ERROR_MODELS: bool
MIMIQ_CLASSICALLY_CONTROLLED_OPS: frozenset[OpSignature]
SUPPORTED_OPERATIONS: frozenset[OpSignature]
circuit_varname: str
convert_circuit(input_circuit)[source]

Convert a Circuit to a MimiqCircuitAndRegisterMap.

Parameters:

input_circuit (Circuit) – The input circuit to convert.

Returns:

The converted Mimiq circuit program and register map.

Return type:

MimiqCircuitAndRegisterMap

emit_init_instructions(input_circuit)[source]

Provide the python code (as a string) to initializes the quantum and classical registers, and return the mapping from eka channel to register.

Return type:

tuple[str, dict[Channel, int], dict[Channel, int]]

emit_leaf_circuit_instruction(input_circuit, quantum_channel_map, classical_channel_map)[source]

Provide the python code (as a string) to emit an Eka instruction in the target language.

Return type:

str

mimiq_import_prefix: str
model_computed_fields: ClassVar[Dict[str, ComputedFieldInfo]] = {}

A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

model_config: ClassVar[ConfigDict] = {'frozen': True}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

model_fields: ClassVar[Dict[str, FieldInfo]] = {'ALLOW_ERROR_MODELS': FieldInfo(annotation=bool, required=False, default=False, frozen=True, init=False), 'MIMIQ_CLASSICALLY_CONTROLLED_OPS': FieldInfo(annotation=frozenset[OpSignature], required=False, default=frozenset({OpSignature(name='classical_controlled_x', op_type=<OpType.CUSTOM: 'custom'>, quantum_input=1, classical_input=1, is_clifford=True, description=''), OpSignature(name='classical_controlled_measurement', op_type=<OpType.CUSTOM: 'custom'>, quantum_input=1, classical_input=1, is_clifford=True, description=''), OpSignature(name='classical_controlled_reset_0', op_type=<OpType.CUSTOM: 'custom'>, quantum_input=1, classical_input=1, is_clifford=True, description=''), OpSignature(name='classical_controlled_reset_+i', op_type=<OpType.CUSTOM: 'custom'>, quantum_input=1, classical_input=1, is_clifford=True, description=''), OpSignature(name='classical_controlled_z', op_type=<OpType.CUSTOM: 'custom'>, quantum_input=1, classical_input=1, is_clifford=True, description=''), OpSignature(name='classical_controlled_cy', op_type=<OpType.CUSTOM: 'custom'>, quantum_input=1, classical_input=1, is_clifford=True, description=''), OpSignature(name='classical_controlled_phaseinv', op_type=<OpType.CUSTOM: 'custom'>, quantum_input=1, classical_input=1, is_clifford=True, description=''), OpSignature(name='classical_controlled_reset_-', op_type=<OpType.CUSTOM: 'custom'>, quantum_input=1, classical_input=1, is_clifford=True, description=''), OpSignature(name='classical_controlled_h', op_type=<OpType.CUSTOM: 'custom'>, quantum_input=1, classical_input=1, is_clifford=True, description=''), OpSignature(name='classical_controlled_y', op_type=<OpType.CUSTOM: 'custom'>, quantum_input=1, classical_input=1, is_clifford=True, description=''), OpSignature(name='classical_controlled_measure_z', op_type=<OpType.CUSTOM: 'custom'>, quantum_input=1, classical_input=1, is_clifford=True, description=''), OpSignature(name='classical_controlled_cx', op_type=<OpType.CUSTOM: 'custom'>, quantum_input=1, classical_input=1, is_clifford=True, description=''), OpSignature(name='classical_controlled_reset_1', op_type=<OpType.CUSTOM: 'custom'>, quantum_input=1, classical_input=1, is_clifford=True, description=''), OpSignature(name='classical_controlled_reset_-i', op_type=<OpType.CUSTOM: 'custom'>, quantum_input=1, classical_input=1, is_clifford=True, description=''), OpSignature(name='classical_controlled_cz', op_type=<OpType.CUSTOM: 'custom'>, quantum_input=1, classical_input=1, is_clifford=True, description=''), OpSignature(name='classical_controlled_reset_+', op_type=<OpType.CUSTOM: 'custom'>, quantum_input=1, classical_input=1, is_clifford=True, description=''), OpSignature(name='classical_controlled_cnot', op_type=<OpType.CUSTOM: 'custom'>, quantum_input=1, classical_input=1, is_clifford=True, description=''), OpSignature(name='classical_controlled_swap', op_type=<OpType.CUSTOM: 'custom'>, quantum_input=1, classical_input=1, is_clifford=True, description=''), OpSignature(name='classical_controlled_phase', op_type=<OpType.CUSTOM: 'custom'>, quantum_input=1, classical_input=1, is_clifford=True, description=''), OpSignature(name='classical_controlled_i', op_type=<OpType.CUSTOM: 'custom'>, quantum_input=1, classical_input=1, is_clifford=True, description=''), OpSignature(name='classical_controlled_reset', op_type=<OpType.CUSTOM: 'custom'>, quantum_input=1, classical_input=1, is_clifford=True, description=''), OpSignature(name='classical_controlled_measure_y', op_type=<OpType.CUSTOM: 'custom'>, quantum_input=1, classical_input=1, is_clifford=True, description=''), OpSignature(name='classical_controlled_measure_x', op_type=<OpType.CUSTOM: 'custom'>, quantum_input=1, classical_input=1, is_clifford=True, description='')})), 'SUPPORTED_OPERATIONS': FieldInfo(annotation=frozenset[OpSignature], required=False, default=frozenset({OpSignature(name='measure_z', op_type=<OpType.MEASUREMENT: 'measurement'>, quantum_input=1, classical_input=1, is_clifford=True, description=''), OpSignature(name='reset_0', op_type=<OpType.RESET: 'reset'>, quantum_input=1, classical_input=0, is_clifford=True, description=''), OpSignature(name='reset_-i', op_type=<OpType.RESET: 'reset'>, quantum_input=1, classical_input=0, is_clifford=True, description=''), OpSignature(name='indent_more', op_type=<OpType.UTILS: 'utils'>, quantum_input=0, classical_input=0, is_clifford=True, description=''), OpSignature(name='cz', op_type=<OpType.TWO_QUBIT: 'two_qubit'>, quantum_input=2, classical_input=0, is_clifford=True, description=''), OpSignature(name='comment', op_type=<OpType.UTILS: 'utils'>, quantum_input=0, classical_input=0, is_clifford=True, description=''), OpSignature(name='phase', op_type=<OpType.SINGLE_QUBIT: 'single_qubit'>, quantum_input=1, classical_input=0, is_clifford=True, description=''), OpSignature(name='h', op_type=<OpType.SINGLE_QUBIT: 'single_qubit'>, quantum_input=1, classical_input=0, is_clifford=True, description=''), OpSignature(name='measurement', op_type=<OpType.MEASUREMENT: 'measurement'>, quantum_input=1, classical_input=1, is_clifford=True, description=''), OpSignature(name='cnot', op_type=<OpType.TWO_QUBIT: 'two_qubit'>, quantum_input=2, classical_input=0, is_clifford=True, description=''), OpSignature(name='reset_1', op_type=<OpType.RESET: 'reset'>, quantum_input=1, classical_input=0, is_clifford=True, description=''), OpSignature(name='measure_y', op_type=<OpType.MEASUREMENT: 'measurement'>, quantum_input=1, classical_input=1, is_clifford=True, description=''), OpSignature(name='indent_less', op_type=<OpType.UTILS: 'utils'>, quantum_input=0, classical_input=0, is_clifford=True, description=''), OpSignature(name='measure_x', op_type=<OpType.MEASUREMENT: 'measurement'>, quantum_input=1, classical_input=1, is_clifford=True, description=''), OpSignature(name='i', op_type=<OpType.SINGLE_QUBIT: 'single_qubit'>, quantum_input=1, classical_input=0, is_clifford=True, description=''), OpSignature(name='reset', op_type=<OpType.RESET: 'reset'>, quantum_input=1, classical_input=0, is_clifford=True, description=''), OpSignature(name='z', op_type=<OpType.SINGLE_QUBIT: 'single_qubit'>, quantum_input=1, classical_input=0, is_clifford=True, description=''), OpSignature(name='phaseinv', op_type=<OpType.SINGLE_QUBIT: 'single_qubit'>, quantum_input=1, classical_input=0, is_clifford=True, description=''), OpSignature(name='cy', op_type=<OpType.TWO_QUBIT: 'two_qubit'>, quantum_input=2, classical_input=0, is_clifford=True, description=''), OpSignature(name='x', op_type=<OpType.SINGLE_QUBIT: 'single_qubit'>, quantum_input=1, classical_input=0, is_clifford=True, description=''), OpSignature(name='reset_+', op_type=<OpType.RESET: 'reset'>, quantum_input=1, classical_input=0, is_clifford=True, description=''), OpSignature(name='cx', op_type=<OpType.TWO_QUBIT: 'two_qubit'>, quantum_input=2, classical_input=0, is_clifford=True, description=''), OpSignature(name='reset_-', op_type=<OpType.RESET: 'reset'>, quantum_input=1, classical_input=0, is_clifford=True, description=''), OpSignature(name='reset_+i', op_type=<OpType.RESET: 'reset'>, quantum_input=1, classical_input=0, is_clifford=True, description=''), OpSignature(name='swap', op_type=<OpType.TWO_QUBIT: 'two_qubit'>, quantum_input=2, classical_input=0, is_clifford=True, description=''), OpSignature(name='y', op_type=<OpType.SINGLE_QUBIT: 'single_qubit'>, quantum_input=1, classical_input=0, is_clifford=True, description='')})), 'circuit_varname': FieldInfo(annotation=str, required=False, default='circuit', description='The name of the Mimiq circuit variable.', frozen=True, init=True), 'mimiq_import_prefix': FieldInfo(annotation=str, required=False, default='mc.', description='The import alias for Mimiq.', frozen=True, init=True), 'separator_for_else_in_condition': FieldInfo(annotation=str, required=False, default=', is_else=', description='The separator string used in the description for else conditions.', frozen=True, init=False)}

Metadata about the fields defined on the model, mapping of field names to [FieldInfo][pydantic.fields.FieldInfo] objects.

This replaces Model.__fields__ from Pydantic V1.

property operations_map: dict[str, Callable[[list[str], list[str], str | None], str]]

Map of operation signatures to their corresponding Mimiq operations.

parse_if_operation(if_circuit)[source]

Parse control flow operation, allowing only specific cases supported by MIMIQ. MIMIQ only supports conditional unitary operations.

Parameters:

if_circuit (IfElseCircuit) – The IfElseCircuit to parse.

Returns:

A Circuit (gate) representing the parsed if operation in MIMIQ.

Return type:

Circuit

static parse_target_run_outcome(run_output)[source]

Parse the run output of the target language into a dictionary mapping the eka channel labels to boolean values measured at each shot.

Return type:

dict[str, int | list[int]]

classmethod validate_import_prefix(v)[source]

Ensure the import prefix ends with a dot if not empty.

Return type:

str