loom.executor.eka_to_qasm_converter

Copyright 2024 Entropica Labs Pte Ltd

Licensed under the Apache License, Version 2.0 (the “License”); you may not use this file except in compliance with the License. You may obtain a copy of the License at

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.

class loom.executor.eka_to_qasm_converter.EkaToQasmConverter(**data)[source]

Bases: Converter[tuple[str, dict[Channel, int], dict[Channel, int]], Any]

Convert EKA circuits to OpenQASM3.0 format. This converter translates Eka operations into their corresponding OpenQASM3.0 instructions, handling quantum and classical channels appropriately.

Here’s a simple example of how to use this method to execute Eka experiment in Qiskit through QASM conversion:

from loom.executor import EkaToQasmConverter

qasm_program, q_register, c_register = EkaToQasmConverter().convert(eka)

from qiskit import QuantumCircuit, transpile
from qiskit_aer import AerSimulator
import qiskit.qasm3

circuit = qiskit.qasm3.loads(qasm_program)
simulator = AerSimulator()
qc_t = transpile(circuit, simulator)

result = simulator.run(qc_t, shots=5).result().get_counts()

parsed_outcome = EkaToQasmConverter.parse_target_run_outcome(
    (result, c_register)
)

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

ALLOW_ERROR_MODELS: bool
SUPPORTED_OPERATIONS: frozenset[OpSignature]
convert_circuit(input_circuit)[source]

Convert an Eka circuit to OpenQASM3.0 format.

Parameters:

input_data (Circuit) – The Eka circuit to convert.

Returns:

A tuple containing the QASM program as a string, a mapping from quantum channels to their indices, and a mapping from classical channels to their indices.

Return type:

QasmProgram (tuple[str, dict[Channel, int], dict[Channel, int]])

emit_init_instructions(circuit)[source]

Provide the python code to initializes the quantum and classical registers, and return the mapping from eka channel to register index.

Return type:

tuple[str, dict[Channel, Any], dict[Channel, Any]]

emit_leaf_circuit_instruction(circuit, quantum_channel_map, classical_channel_map)[source]

Provide the python code to emit an Eka instruction in the target language.

Return type:

str

model_computed_fields: ClassVar[Dict[str, ComputedFieldInfo]] = {}

A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

model_config: ClassVar[ConfigDict] = {'frozen': True}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

model_fields: ClassVar[Dict[str, FieldInfo]] = {'ALLOW_ERROR_MODELS': FieldInfo(annotation=bool, required=False, default=False, frozen=True, init=False), 'SUPPORTED_OPERATIONS': FieldInfo(annotation=frozenset[OpSignature], required=False, default=frozenset({OpSignature(name='nand', op_type=<OpType.BOOL_LOGIC: 'bool_logic'>, quantum_input=0, classical_input=2, is_clifford=False, description=''), OpSignature(name='measure_z', op_type=<OpType.MEASUREMENT: 'measurement'>, quantum_input=1, classical_input=1, is_clifford=True, description=''), OpSignature(name='and', op_type=<OpType.BOOL_LOGIC: 'bool_logic'>, quantum_input=0, classical_input=2, is_clifford=False, description=''), OpSignature(name='reset_0', op_type=<OpType.RESET: 'reset'>, quantum_input=1, classical_input=0, is_clifford=True, description=''), OpSignature(name='match', op_type=<OpType.BOOL_LOGIC: 'bool_logic'>, quantum_input=0, classical_input=1, is_clifford=False, description=''), OpSignature(name='indent_more', op_type=<OpType.UTILS: 'utils'>, quantum_input=0, classical_input=0, is_clifford=True, description=''), OpSignature(name='comment', op_type=<OpType.UTILS: 'utils'>, quantum_input=0, classical_input=0, is_clifford=True, description=''), OpSignature(name='classical_else', op_type=<OpType.CONTROL_FLOW: 'control_flow'>, quantum_input=0, classical_input=0, is_clifford=True, description=''), OpSignature(name='reset_1', op_type=<OpType.RESET: 'reset'>, quantum_input=1, classical_input=0, is_clifford=True, description=''), OpSignature(name='measure_y', op_type=<OpType.MEASUREMENT: 'measurement'>, quantum_input=1, classical_input=1, is_clifford=True, description=''), OpSignature(name='indent_less', op_type=<OpType.UTILS: 'utils'>, quantum_input=0, classical_input=0, is_clifford=True, description=''), OpSignature(name='z', op_type=<OpType.SINGLE_QUBIT: 'single_qubit'>, quantum_input=1, classical_input=0, is_clifford=True, description=''), OpSignature(name='phaseinv', op_type=<OpType.SINGLE_QUBIT: 'single_qubit'>, quantum_input=1, classical_input=0, is_clifford=True, description=''), OpSignature(name='cy', op_type=<OpType.TWO_QUBIT: 'two_qubit'>, quantum_input=2, classical_input=0, is_clifford=True, description=''), OpSignature(name='xor', op_type=<OpType.BOOL_LOGIC: 'bool_logic'>, quantum_input=0, classical_input=2, is_clifford=False, description=''), OpSignature(name='reset_+', op_type=<OpType.RESET: 'reset'>, quantum_input=1, classical_input=0, is_clifford=True, description=''), OpSignature(name='or', op_type=<OpType.BOOL_LOGIC: 'bool_logic'>, quantum_input=0, classical_input=2, is_clifford=False, description=''), OpSignature(name='cx', op_type=<OpType.TWO_QUBIT: 'two_qubit'>, quantum_input=2, classical_input=0, is_clifford=True, description=''), OpSignature(name='reset_-', op_type=<OpType.RESET: 'reset'>, quantum_input=1, classical_input=0, is_clifford=True, description=''), OpSignature(name='reset_+i', op_type=<OpType.RESET: 'reset'>, quantum_input=1, classical_input=0, is_clifford=True, description=''), OpSignature(name='y', op_type=<OpType.SINGLE_QUBIT: 'single_qubit'>, quantum_input=1, classical_input=0, is_clifford=True, description=''), OpSignature(name='not', op_type=<OpType.BOOL_LOGIC: 'bool_logic'>, quantum_input=0, classical_input=1, is_clifford=False, description=''), OpSignature(name='reset_-i', op_type=<OpType.RESET: 'reset'>, quantum_input=1, classical_input=0, is_clifford=True, description=''), OpSignature(name='cz', op_type=<OpType.TWO_QUBIT: 'two_qubit'>, quantum_input=2, classical_input=0, is_clifford=True, description=''), OpSignature(name='phase', op_type=<OpType.SINGLE_QUBIT: 'single_qubit'>, quantum_input=1, classical_input=0, is_clifford=True, description=''), OpSignature(name='h', op_type=<OpType.SINGLE_QUBIT: 'single_qubit'>, quantum_input=1, classical_input=0, is_clifford=True, description=''), OpSignature(name='measurement', op_type=<OpType.MEASUREMENT: 'measurement'>, quantum_input=1, classical_input=1, is_clifford=True, description=''), OpSignature(name='cnot', op_type=<OpType.TWO_QUBIT: 'two_qubit'>, quantum_input=2, classical_input=0, is_clifford=True, description=''), OpSignature(name='nor', op_type=<OpType.BOOL_LOGIC: 'bool_logic'>, quantum_input=0, classical_input=2, is_clifford=False, description=''), OpSignature(name='end_if', op_type=<OpType.CONTROL_FLOW: 'control_flow'>, quantum_input=0, classical_input=0, is_clifford=True, description=''), OpSignature(name='measure_x', op_type=<OpType.MEASUREMENT: 'measurement'>, quantum_input=1, classical_input=1, is_clifford=True, description=''), OpSignature(name='i', op_type=<OpType.SINGLE_QUBIT: 'single_qubit'>, quantum_input=1, classical_input=0, is_clifford=True, description=''), OpSignature(name='reset', op_type=<OpType.RESET: 'reset'>, quantum_input=1, classical_input=0, is_clifford=True, description=''), OpSignature(name='x', op_type=<OpType.SINGLE_QUBIT: 'single_qubit'>, quantum_input=1, classical_input=0, is_clifford=True, description=''), OpSignature(name='classical_if', op_type=<OpType.CONTROL_FLOW: 'control_flow'>, quantum_input=0, classical_input=0, is_clifford=True, description=''), OpSignature(name='swap', op_type=<OpType.TWO_QUBIT: 'two_qubit'>, quantum_input=2, classical_input=0, is_clifford=True, description='')})), 'separator_for_else_in_condition': FieldInfo(annotation=str, required=False, default=', is_else=', description='The separator string used in the description for else conditions.', frozen=True, init=False)}

Metadata about the fields defined on the model, mapping of field names to [FieldInfo][pydantic.fields.FieldInfo] objects.

This replaces Model.__fields__ from Pydantic V1.

property operations_map: dict[str, Callable[[list[str], list[str], str | None], str]]

Map of operation signatures to their corresponding QASM instructions.

static parse_target_run_outcome(run_output)[source]

Parse the output of a target run by mapping the bitstring to the register labels.

Parameters:

run_output (tuple[dict[str, int], dict[Channel, int]]) –

Output of the simulation run as a tuple of:

  • bitstrings: dict with keys as bitstrings and values as their counts,

  • channel_to_idx: a mapping from channels to their bitstring indices, this mapping is given by the converter when exporting the circuit.

Returns:

dict mapping register labels to their corresponding values (a list where each element represents the value of the register in a specific shot).

Return type:

dict[str, int | list[int]]