Source code for loom.validator.circuit_validation_wrappers

"""
Copyright 2024 Entropica Labs Pte Ltd

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

"""

from ..eka import Circuit, Block, Stabilizer

from .circuit_validation import is_circuit_valid
from .debug_dataclass import DebugData
from .utilities import logical_states_to_check, logical_state_transformations_to_check


[docs] def is_syndrome_extraction_circuit_valid( circuit: Circuit, input_block: Block | tuple[Block, ...], measurement_to_input_stabilizer_map: dict[str, Stabilizer], ) -> DebugData: """Tests if the syndrome extraction circuit is a valid one. The function checks that the circuit: - does not alter the check operators - acts on the logical level as identity - measures indeed the specified input check operators with specific measurement operations Parameters ---------- circuit : Circuit The syndrome extraction circuit. input_block : Block | tuple[Block, ...] The input Block object(s). measurement_to_input_stabilizer_map : dict[str, Stabilizer] Dictionary matching the classical channel name of a measurement operation with a stabilizer in the input code. Returns ------- DebugData The result of the checks. """ logical_state_transformations = [ (state, (state,)) for state in logical_states_to_check(input_block.n_logical_qubits) ] # Check if the circuit is valid return is_circuit_valid( circuit=circuit, input_block=input_block, output_block=input_block, output_stabilizers_parity={}, output_stabilizers_with_any_value=[], logical_state_transformations_with_parity={}, logical_state_transformations=logical_state_transformations, measurement_to_input_stabilizer_map=measurement_to_input_stabilizer_map, )
[docs] def is_logical_operation_circuit_valid( circuit: Circuit, input_block: Block | tuple[Block, ...], x_operators_sparse_pauli_map: list[str], z_operators_sparse_pauli_map: list[str], ) -> DebugData: """Checks if the logical operation circuit is a valid one. The function checks that the circuit: - does not alter the check operators - acts on the logical level in a way that is consistent with the logical operation defined by the x and z maps For example, for a CNOT gate from qubit 0 to qubit 1 we know that: - X0 -> X0X1 - X1 -> X1 - Z0 -> Z0 - Z1 -> Z0Z1 and thus the input pauli map arguments will be: - `x_operators_sparse_pauli_map = ["X0X1", "X1"]` - `z_operators_sparse_pauli_map = ["Z0", "Z0Z1"]` Parameters ---------- circuit : Circuit The logical operation circuit. input_block : Block | tuple[Block, ...] The input Block object(s). x_operators_sparse_pauli_map : list[str] The list of sparse Pauli strings describing how each X operator is transformed. No sign is needed and the order matches the transformation of the logical operators X0, X1, ... z_operators_sparse_pauli_map : list[str] The list of sparse Pauli strings describing how each Z operator is transformed. No sign is needed and the order matches the transformation of the logical operators Z0, Z1, ... Returns ------- DebugData The result of the checks. """ # Get the logical state transformations to check logical_state_transformations = logical_state_transformations_to_check( x_operators_sparse_pauli_map, z_operators_sparse_pauli_map ) return is_circuit_valid( circuit=circuit, input_block=input_block, output_block=input_block, output_stabilizers_parity={}, output_stabilizers_with_any_value=[], logical_state_transformations_with_parity={}, logical_state_transformations=logical_state_transformations, measurement_to_input_stabilizer_map={}, )