Source code for loom.validator.circuit_validation_wrappers

"""
Copyright (c) Entropica Labs Pte Ltd 2025.

Use, distribution and reproduction of this program in its source or compiled
form is prohibited without the express written consent of Entropica Labs Pte
Ltd.

"""

from ..eka import Circuit, Block, Stabilizer

from .circuit_validation import is_circuit_valid
from .debug_dataclass import DebugData
from .utilities import logical_states_to_check, logical_state_transformations_to_check


[docs] def is_syndrome_extraction_circuit_valid( circuit: Circuit, input_block: Block | tuple[Block, ...], measurement_to_input_stabilizer_map: dict[str, Stabilizer], ) -> DebugData: """Tests if the syndrome extraction circuit is a valid one. The function checks that the circuit: - does not alter the check operators - acts on the logical level as identity - measures indeed the specified input check operators with specific measurement operations Parameters ---------- circuit : Circuit The syndrome extraction circuit. input_block : Block | tuple[Block, ...] The input Block object(s). measurement_to_input_stabilizer_map : dict[str, Stabilizer] Dictionary matching the classical channel name of a measurement operation with a stabilizer in the input code. Returns ------- DebugData The result of the checks. """ logical_state_transformations = [ (state, (state,)) for state in logical_states_to_check(input_block.n_logical_qubits) ] # Check if the circuit is valid return is_circuit_valid( circuit=circuit, input_block=input_block, output_block=input_block, output_stabilizers_parity={}, output_stabilizers_with_any_value=[], logical_state_transformations_with_parity={}, logical_state_transformations=logical_state_transformations, measurement_to_input_stabilizer_map=measurement_to_input_stabilizer_map, )
[docs] def is_logical_operation_circuit_valid( circuit: Circuit, input_block: Block | tuple[Block, ...], x_operators_sparse_pauli_map: list[str], z_operators_sparse_pauli_map: list[str], ) -> DebugData: """Checks if the logical operation circuit is a valid one. The function checks that the circuit: - does not alter the check operators - acts on the logical level in a way that is consistent with the logical operation defined by the x and z maps For example, for a CNOT gate from qubit 0 to qubit 1 we know that: - X0 -> X0X1 - X1 -> X1 - Z0 -> Z0 - Z1 -> Z0Z1 and thus the input pauli map arguments will be: - `x_operators_sparse_pauli_map = ["X0X1", "X1"]` - `z_operators_sparse_pauli_map = ["Z0", "Z0Z1"]` Parameters ---------- circuit : Circuit The logical operation circuit. input_block : Block | tuple[Block, ...] The input Block object(s). x_operators_sparse_pauli_map : list[str] The list of sparse Pauli strings describing how each X operator is transformed. No sign is needed and the order matches the transformation of the logical operators X0, X1, ... z_operators_sparse_pauli_map : list[str] The list of sparse Pauli strings describing how each Z operator is transformed. No sign is needed and the order matches the transformation of the logical operators Z0, Z1, ... Returns ------- DebugData The result of the checks. """ # Get the logical state transformations to check logical_state_transformations = logical_state_transformations_to_check( x_operators_sparse_pauli_map, z_operators_sparse_pauli_map ) return is_circuit_valid( circuit=circuit, input_block=input_block, output_block=input_block, output_stabilizers_parity={}, output_stabilizers_with_any_value=[], logical_state_transformations_with_parity={}, logical_state_transformations=logical_state_transformations, measurement_to_input_stabilizer_map={}, )