loom.executor.eka_to_cudaq_converter

Copyright 2024 Entropica Labs Pte Ltd

Licensed under the Apache License, Version 2.0 (the “License”); you may not use this file except in compliance with the License. You may obtain a copy of the License at

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.

class loom.executor.eka_to_cudaq_converter.EkaToCudaqConverter(**data)[source]

Bases: Converter[tuple[str, dict[Channel, str], dict[Channel, Union[str, NoneType]]], Any]

Convert an InterpretationStep to a CudaQ circuit.

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

ALLOW_ERROR_MODELS: bool
SUPPORTED_OPERATIONS: frozenset[OpSignature]
convert_circuit(input_circuit)[source]

Convert a Circuit to a cudaq kernel.

Parameters:

input_circuit (Circuit) – The input circuit to convert.

Return type:

tuple[str, dict[Channel, str], dict[Channel, str | None]]

Returns:

  • str – The converted cudaq circuit program.

  • dict[Channel, str] – A dictionary mapping quantum channel to their allocated registers.

  • dict[Channel, str | None] – A dictionary mapping classical channel to their allocated registers. If a classical channel is not allocated, its value will be None.

Raises:
  • TypeError – If the input is not a Circuit.

  • ValueError – If the input circuit is empty or does not contain any quantum channels.

emit_init_instructions(input_circuit)[source]

Provide the python or c++ code (as a string) to initializes the quantum and classical registers, and return the mapping from eka channel id to register.

Return type:

tuple[str, dict[Channel, str], dict[Channel, str]]

emit_leaf_circuit_instruction(circuit, quantum_channel_map, classical_channel_map)[source]

Emit the instruction for a leaf circuit (a circuit with no sub-circuits).

Return type:

str

model_computed_fields: ClassVar[Dict[str, ComputedFieldInfo]] = {}

A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

model_config: ClassVar[ConfigDict] = {'frozen': True}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

model_fields: ClassVar[Dict[str, FieldInfo]] = {'ALLOW_ERROR_MODELS': FieldInfo(annotation=bool, required=False, default=False, frozen=True, init=False), 'SUPPORTED_OPERATIONS': FieldInfo(annotation=frozenset[OpSignature], required=False, default=frozenset({OpSignature(name='nand', op_type=<OpType.BOOL_LOGIC: 'bool_logic'>, quantum_input=0, classical_input=2, is_clifford=False, description=''), OpSignature(name='measure_z', op_type=<OpType.MEASUREMENT: 'measurement'>, quantum_input=1, classical_input=1, is_clifford=True, description=''), OpSignature(name='and', op_type=<OpType.BOOL_LOGIC: 'bool_logic'>, quantum_input=0, classical_input=2, is_clifford=False, description=''), OpSignature(name='reset_0', op_type=<OpType.RESET: 'reset'>, quantum_input=1, classical_input=0, is_clifford=True, description=''), OpSignature(name='match', op_type=<OpType.BOOL_LOGIC: 'bool_logic'>, quantum_input=0, classical_input=1, is_clifford=False, description=''), OpSignature(name='indent_more', op_type=<OpType.UTILS: 'utils'>, quantum_input=0, classical_input=0, is_clifford=True, description=''), OpSignature(name='comment', op_type=<OpType.UTILS: 'utils'>, quantum_input=0, classical_input=0, is_clifford=True, description=''), OpSignature(name='classical_else', op_type=<OpType.CONTROL_FLOW: 'control_flow'>, quantum_input=0, classical_input=0, is_clifford=True, description=''), OpSignature(name='reset_1', op_type=<OpType.RESET: 'reset'>, quantum_input=1, classical_input=0, is_clifford=True, description=''), OpSignature(name='measure_y', op_type=<OpType.MEASUREMENT: 'measurement'>, quantum_input=1, classical_input=1, is_clifford=True, description=''), OpSignature(name='indent_less', op_type=<OpType.UTILS: 'utils'>, quantum_input=0, classical_input=0, is_clifford=True, description=''), OpSignature(name='z', op_type=<OpType.SINGLE_QUBIT: 'single_qubit'>, quantum_input=1, classical_input=0, is_clifford=True, description=''), OpSignature(name='phaseinv', op_type=<OpType.SINGLE_QUBIT: 'single_qubit'>, quantum_input=1, classical_input=0, is_clifford=True, description=''), OpSignature(name='cy', op_type=<OpType.TWO_QUBIT: 'two_qubit'>, quantum_input=2, classical_input=0, is_clifford=True, description=''), OpSignature(name='xor', op_type=<OpType.BOOL_LOGIC: 'bool_logic'>, quantum_input=0, classical_input=2, is_clifford=False, description=''), OpSignature(name='reset_+', op_type=<OpType.RESET: 'reset'>, quantum_input=1, classical_input=0, is_clifford=True, description=''), OpSignature(name='or', op_type=<OpType.BOOL_LOGIC: 'bool_logic'>, quantum_input=0, classical_input=2, is_clifford=False, description=''), OpSignature(name='cx', op_type=<OpType.TWO_QUBIT: 'two_qubit'>, quantum_input=2, classical_input=0, is_clifford=True, description=''), OpSignature(name='reset_-', op_type=<OpType.RESET: 'reset'>, quantum_input=1, classical_input=0, is_clifford=True, description=''), OpSignature(name='reset_+i', op_type=<OpType.RESET: 'reset'>, quantum_input=1, classical_input=0, is_clifford=True, description=''), OpSignature(name='y', op_type=<OpType.SINGLE_QUBIT: 'single_qubit'>, quantum_input=1, classical_input=0, is_clifford=True, description=''), OpSignature(name='not', op_type=<OpType.BOOL_LOGIC: 'bool_logic'>, quantum_input=0, classical_input=1, is_clifford=False, description=''), OpSignature(name='reset_-i', op_type=<OpType.RESET: 'reset'>, quantum_input=1, classical_input=0, is_clifford=True, description=''), OpSignature(name='cz', op_type=<OpType.TWO_QUBIT: 'two_qubit'>, quantum_input=2, classical_input=0, is_clifford=True, description=''), OpSignature(name='phase', op_type=<OpType.SINGLE_QUBIT: 'single_qubit'>, quantum_input=1, classical_input=0, is_clifford=True, description=''), OpSignature(name='h', op_type=<OpType.SINGLE_QUBIT: 'single_qubit'>, quantum_input=1, classical_input=0, is_clifford=True, description=''), OpSignature(name='measurement', op_type=<OpType.MEASUREMENT: 'measurement'>, quantum_input=1, classical_input=1, is_clifford=True, description=''), OpSignature(name='cnot', op_type=<OpType.TWO_QUBIT: 'two_qubit'>, quantum_input=2, classical_input=0, is_clifford=True, description=''), OpSignature(name='nor', op_type=<OpType.BOOL_LOGIC: 'bool_logic'>, quantum_input=0, classical_input=2, is_clifford=False, description=''), OpSignature(name='end_if', op_type=<OpType.CONTROL_FLOW: 'control_flow'>, quantum_input=0, classical_input=0, is_clifford=True, description=''), OpSignature(name='measure_x', op_type=<OpType.MEASUREMENT: 'measurement'>, quantum_input=1, classical_input=1, is_clifford=True, description=''), OpSignature(name='i', op_type=<OpType.SINGLE_QUBIT: 'single_qubit'>, quantum_input=1, classical_input=0, is_clifford=True, description=''), OpSignature(name='reset', op_type=<OpType.RESET: 'reset'>, quantum_input=1, classical_input=0, is_clifford=True, description=''), OpSignature(name='x', op_type=<OpType.SINGLE_QUBIT: 'single_qubit'>, quantum_input=1, classical_input=0, is_clifford=True, description=''), OpSignature(name='classical_if', op_type=<OpType.CONTROL_FLOW: 'control_flow'>, quantum_input=0, classical_input=0, is_clifford=True, description=''), OpSignature(name='swap', op_type=<OpType.TWO_QUBIT: 'two_qubit'>, quantum_input=2, classical_input=0, is_clifford=True, description='')})), 'separator_for_else_in_condition': FieldInfo(annotation=str, required=False, default=', is_else=', description='The separator string used in the description for else conditions.', frozen=True, init=False)}

Metadata about the fields defined on the model, mapping of field names to [FieldInfo][pydantic.fields.FieldInfo] objects.

This replaces Model.__fields__ from Pydantic V1.

property operations_map: dict[str, Callable[[list[str], list[str], str | None], str]]

Map of operation signatures to their corresponding CudaQ operations.

static parse_target_run_outcome(run_output, classical_reg_mapping)[source]

Parse the run output of the target language into a dictionary mapping the eka channel labels to int values measured at each shot.

Return type:

dict[str, list[int]]